Search results for "Symbolic dynamics"

showing 10 items of 11 documents

Feigenbaum graphs: a complex network perspective of chaos

2011

The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map…

Dynamical systems theoryScienceSymbolic dynamicsFOS: Physical sciencesLyapunov exponentFixed pointBioinformatics01 natural sciences010305 fluids & plasmasStatistical Mechanicssymbols.namesake0103 physical sciencesAttractorEntropy (information theory)Statistical physics010306 general physicsChaotic SystemsCondensed-Matter PhysicsCondensed Matter - Statistical MechanicsPhysicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)Applied MathematicsPhysicsQRComplex SystemsComplex networkNonlinear Sciences - Chaotic DynamicsDegree distributionNonlinear DynamicssymbolsMedicineChaotic Dynamics (nlin.CD)MathematicsAlgorithmsResearch Article
researchProduct

Euler integral as a source of chaos in the three–body problem

2022

In this paper we address, from a purely numerical point of view, the question, raised in [20, 21], and partly considered in [22, 9, 3], whether a certain function, referred to as "Euler Integral", is a quasi-integral along the trajectories of the three-body problem. Differently from our previous investigations, here we focus on the region of the "unperturbed separatrix", which turns to be complicated by a collision singularity. Concretely, we reduce the Hamiltonian to two degrees of freedom and, after fixing some energy level, we discuss in detail the resulting three-dimensional phase space around an elliptic and an hyperbolic periodic orbit. After measuring the strength of variation of the…

Numerical AnalysisApplied MathematicsModeling and SimulationThree-body problemFOS: MathematicsEuler integralSymbolic dynamicsDynamical Systems (math.DS)Mathematics - Dynamical SystemsSettore MAT/07 - Fisica Matematica
researchProduct

Forbidden words in symbolic dynamics

2000

AbstractWe introduce an equivalence relation≃between functions from N to N. By describing a symbolic dynamical system in terms of forbidden words, we prove that the≃-equivalence class of the function that counts the minimal forbidden words of a system is a topological invariant of the system. We show that the new invariant is independent from previous ones, but it is not characteristic. In the case of sofic systems, we prove that the≃-equivalence of the corresponding functions is a decidable question. As a more special application, we show, by using the new invariant, that two systems associated to Sturmian words having “different slope” are not conjugate.

Discrete mathematicsApplied Mathematicsautomata and formal languages010102 general mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Symbolic dynamics[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciencesFunction (mathematics)16. Peace & justice01 natural sciencesDecidabilitysymbolic dynamics010201 computation theory & mathematicsEquivalence relationcombinatoric on words0101 mathematicsInvariant (mathematics)Dynamical system (definition)Equivalence (measure theory)Computer Science::Formal Languages and Automata TheoryWord (group theory)ComputingMilieux_MISCELLANEOUSMathematics
researchProduct

Substitution systems and nonextensive statistics

2015

Abstract Substitution systems evolve in time by generating sequences of symbols from a finite alphabet: At a certain iteration step, the existing symbols are systematically replaced by blocks of N k symbols also within the alphabet (with N k , a natural number, being the length of the k th block of the substitution). The dynamics of these systems leads naturally to fractals and self-similarity. By using B -calculus (Garcia-Morales, 2012) universal maps for deterministic substitution systems both of constant and non-constant length, are formulated in 1D. It is then shown how these systems can be put in direct correspondence with Tsallis entropy. A ‘Second Law of Thermodynamics’ is also prove…

Statistics and ProbabilityDiscrete mathematicsTsallis entropymedia_common.quotation_subjectSymbolic dynamicsBlock (permutation group theory)Substitution (algebra)Natural numberSecond law of thermodynamicsCondensed Matter PhysicsLimit (mathematics)Constant (mathematics)Mathematicsmedia_commonPhysica A: Statistical Mechanics and its Applications
researchProduct

Symbolic Dynamics of Geodesic Flows on Trees

2019

In this chapter, we give a coding of the discrete-time geodesic ow on the nonwandering sets of quotients of locally finite simplicial trees X without terminal vertices by nonelementary discrete subgroups of Aut(X) by a subshift of finite type on a countable alphabet.

CombinatoricsMathematics::Group TheoryMathematics::Dynamical SystemsGeodesicSymbolic dynamicsCountable setAlphabetSubshift of finite typeComputer Science::Formal Languages and Automata TheoryQuotientMathematicsCoding (social sciences)
researchProduct

Numerical studies to detect chaotic motion in the full planar averaged three-body problem

2023

AbstractIn this paper, the author deals with a well-known problem of Celestial Mechanics, namely the three-body problem. A numerical analysis has been done in order to prove existence of chaotic motions of the full-averaged problem in particular configurations. Full because all the three bodies have non-negligible masses and averaged because the Hamiltonian describing the system has been averaged with respect to a fast angle. A reduction of degrees of freedom and of the phase-space is performed in order to apply the notion of covering relations and symbolic dynamics.

General MathematicsSettore MAT/07 - Fisica MatematicaCelestial mechanics · Three-body problem · Symbolic dynamics · Chaos · Poincaré map
researchProduct

Symbolic dynamics in a binary asteroid system

2020

We highlight the existence of a topological horseshoe arising from a a--priori stable model of the binary asteroid dynamics. The inspection is numerical and uses correctly aligned windows, as described in a recent paper by A. Gierzkiewicz and P. Zgliczy\'nski, combined with a recent analysis of an associated secular problem.

Horseshoe and symbolic dynamicsComputer scienceSymbolic dynamicsFOS: Physical sciencesBinary numberBinary asteroid systemDynamical Systems (math.DS)01 natural sciences010305 fluids & plasmasTopological horseshoe0103 physical sciencesFOS: MathematicsStatistical physicsMathematics - Dynamical Systems010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsNumerical AnalysisApplied MathematicsBinary asteroid system; Horseshoe and symbolic dynamics; Three–body problemMathematical Physics (math-ph)Three-body problemThree–body problemAsteroidModeling and SimulationAstrophysics::Earth and Planetary Astrophysics
researchProduct

Minimal forbidden words and symbolic dynamics

1996

We introduce a new complexity measure of a factorial formal language L: the growth rate of the set of minimal forbidden words. We prove some combinatorial properties of minimal forbidden words. As main result we prove that the growth rate of the set of minimal forbidden words for L is a topological invariant of the dynamical system defined by L.

Discrete mathematicsFactorial010102 general mathematics[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Symbolic dynamicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS]0102 computer and information sciencesInvariant (physics)16. Peace & justice01 natural sciencesCombinatorics010201 computation theory & mathematicsTheoryofComputation_LOGICSANDMEANINGSOFPROGRAMSInformation complexityFormal language0101 mathematicsComputer Science::Formal Languages and Automata TheoryComputingMilieux_MISCELLANEOUSMathematicsofComputing_DISCRETEMATHEMATICSMathematics
researchProduct

INSTABILITY OF HAMILTONIAN SYSTEMS IN THE SENSE OF CHIRIKOV AND BIFURCATION IN A NON LINEAR EVOLUTION PROBLEM EMANATING FROM PHYSICS

2004

We prove the existence of a minimal geometrico-dynamical condition to create hyperbolicity in section in the vicinity of a transversal homoclinic partially hyperbolic torus in a near integrable Hamiltonian system with three degrees of freedom. We deduce in this context a generalization of the Easton's theorem of symbolic dynamics. Then we give the optimal estimation of the Arnold diffusion time along a transition chain in the initially hyperbolic Hamiltonian systems with three degrees of freedom with a surrounding chain of hyperbolic periodic orbits .In a second part, we describe geometrically a mechanism of diffusion studied by Chirikov in a near integrable Hamiltonian system with three de…

[ MATH ] Mathematics [math]dynamique symboliquehyperbolicitymodulational instabilityNavier Stokespartially hyperbolic tori[MATH] Mathematics [math]amplitude equationschevauchement de résonancescenter manifoldconvection mixte –hyperbolicitéoverlapping resonancessymbolic dynamicséquations d'amplitudesystèmes Hamiltoniensbifurcationinstabilité modulationnellevariété centraleHamiltonian systems[MATH]Mathematics [math]tores partiellement hyperboliquesmixed convection
researchProduct

Specification on the interval

1997

We study the consequences of discontinuities on the specification property for interval maps. After giving a necessary and sufficient condition for a piecewise monotonic, piecewise continuous map to have this property, we show that for a large and natural class of families of such maps (including the β \beta -transformations), the set of parameters for which the specification property holds, though dense, has zero Lebesgue measure. Thus, regarding the specification property, the general case is at the opposite of the continuous case solved by A.M. Blokh (Russian Math. Surveys 38 (1983), 133–134) (for which we give a proof).

Discrete mathematicsProperty (philosophy)Lebesgue measureApplied MathematicsGeneral MathematicsSymbolic dynamicsPiecewiseMonotonic functionInterval (mathematics)Classification of discontinuitiesNatural classMathematicsTransactions of the American Mathematical Society
researchProduct